Precision Physics with inclusive B decays: A Global Fit

Aneesh Manohar

University of California, San Diego

In collaboration with Christian Bauer, Zoltan Ligeti, Michael Luke

Describe the decay $B \to X \ell \bar{\nu}$ using optical theorem

$$\Gamma \sim \sum_{X} |\langle B|J^{\mu}|X\rangle|^2 \sim \int d^4q \, e^{-iq \cdot x} \mathrm{Im} \langle B|T\{J^{\mu\dagger}(x)J^{\nu}(0)\}|B\rangle$$

If the intermediate state is far off-shell, one can expand in terms of local operators (OPE) Similar to Deep inelastic scattering or $e^+e^- \rightarrow \text{hadrons}$

Need the integral over the *entire* physical cut Assumption of local duality

Local Duality

- To compare OPE results with data, have to smear result
- Smearing has to be over "many resonances"

Typical OPE result for differential spectrum looks like

$$\frac{d\Gamma}{dX} = \frac{d\Gamma_{\text{part}}}{dX} + 0\frac{\overline{\Lambda}}{m_b}f_{\Lambda}(X) + \frac{\lambda_i}{m_b^2}f_{\lambda_i}(X) + \frac{\rho_i}{m_b^3}f_{\rho_i}(X) + \dots$$

Typical OPE result for moments of spectra looks like

$$\langle X \rangle = \langle X \rangle_{\text{part}} + 0 \frac{\Lambda}{m_b} F_{\Lambda} + \frac{\lambda_i}{m_b^2} F_{\lambda_i} + \frac{\rho_i}{m_b^3} F_{\rho_i} + \dots$$

Each coefficient function has an expansion in $\alpha_s(m_b)$ and depends on m_c/m_b

Compute to order

$$egin{aligned} 1, & rac{\Lambda^2_{ ext{QCD}}}{m_b^2}, & rac{\Lambda^3_{ ext{QCD}}}{m_b^3} \ lpha_s, & lpha_{s,BLM}^2 \end{aligned}$$

For hadronic moments, $\alpha_s \Lambda_{\rm QCD}/m_b$ terms known with no lepton energy cut.

All inclusive results given in terms of parameters: V_{cb} , m_b , m_c , λ_1 , λ_2 \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 , \mathcal{T}_4 , ρ_1 , ρ_2

 \overline{B} and \overline{D} masses can be used: $\overline{m_b}$, $\overline{m_c} \to \overline{\Lambda}$ B^* and D^* masses can be used to fix λ_2 and $\rho_2 - \mathcal{T}_2 - \mathcal{T}_4$ Inclusive results depend on $\mathcal{T}_1 + 3\mathcal{T}_2$, $\mathcal{T}_2 + 3\mathcal{T}_4$ masses depend on $\mathcal{T}_1 + \mathcal{T}_3$ and $\mathcal{T}_2 + \mathcal{T}_4$ V_{cb} , $\overline{\Lambda}$, λ_1

 $\mathcal{T}_1 - 3\mathcal{T}_4, \ \mathcal{T}_2 + \mathcal{T}_4, \ \mathcal{T}_3 + 3\mathcal{T}_4, \ \rho_1$

• Use more data \Rightarrow reduce uncertainties

- See if there are inconsistencies between different measurements. Allows one to test local duality experimentally
- Investigate the effect of theoretical uncertainties
- Include theoretical correlations between different observables

SLAC—Dec 2002 – p.8

All quantities are fit using a consistent scheme

Lepton energy moments from CLEO

CLEO ('02)

 $R_0(1.5 \,\text{GeV}) = 0.6187 \pm 0.0021$ $R_1(1.5 \,\text{GeV}) = (1.7810 \pm 0.0011) \,\text{GeV}$ $R_2(1.5 \,\text{GeV}) = (3.1968 \pm 0.0026) \,\text{GeV}^2$

 R_0 and R_1 : e/μ averaged value including correlation matrix, R_2 : weighted average of e, μ

Lepton energy moments from DELPHI

DELPHI ('02)

 $\overline{R_1(0)} = (1.383 \pm 0.015) \,\text{GeV}$ $R_2(0) - (R_1(0))^2 = (0.192 \pm 0.009) \,\text{GeV}^2$

$$S_1 = m_X^2 - \bar{m}_D^2, \qquad S_2 = \left\langle (m_X^2 - \left\langle m_X^2 \right\rangle)^2 \right\rangle$$

Hadron invariant mass moments from CLEO CLEO ('01)

> $S_1(1.5 \,\text{GeV}) = (0.251 \pm 0.066) \,\text{GeV}^2$ $S_2(1.5 \,\text{GeV}) = (0.576 \pm 0.170) \,\text{GeV}^4$

Hadron invariant mass moments from DELPHI DELPHI ('02)

> $\overline{S}_1(0) = (0.553 \pm 0.088) \,\mathrm{GeV}^2$ $S_2(0) = (1.26 \pm 0.23) \,\mathrm{GeV}^4$

Hadron invariant mass moments from BABAR BABAR ('02)

 $S_1(1.5 \,\text{GeV}) = (0.354 \pm 0.080) \,\text{GeV}^2$

 $S_1(0.9 \,\text{GeV}) = (0.694 \pm 0.114) \,\text{GeV}^2$

Photon energy moments from CLEO CLEO ('01)

 $T_1(2 \text{ GeV}) = (2.346 \pm 0.034) \text{ GeV}$

 $\overline{T_2(2 \,\mathrm{GeV})} = (0.0226 \pm 0.0069) \,\mathrm{GeV}^2$

Average of semileptonic decay width for B^+ and B^0

PDG ('02)

$$\Gamma(B \to X \ell \bar{\nu}) = (42.7 \pm 1.4) \times 10^{-12} \,\mathrm{MeV}$$

Cannot use data that includes B_s , Λ_b

Pole Mass:

- \blacksquare Has a renormalon ambiguity of order $\Lambda_{\rm QCD}$
- Perturbation series poorly behaved
- The two problems are related, asymptotic nature of perturbation series (i.e. divergent) related to non-perturbative corrections

■ MS Mass:

IS Mass using the upsilon expansion

Other Schemes: PS Mass, ... PS mass requires introducing a factorization scale μ_f that enters linearly in the mass: $m_{\text{pole}} = m_{\text{PS}} + \dots \mu_f$

Higher Hadron Moments

- Second hadron moment seems to give orthogonal information to most other moments
- Convergence of this moment questioned in literature

$$\left\langle m_X^4 - \langle m_X^2 \rangle^2 \right\rangle = 0.73 \frac{\bar{\Lambda}^2}{\Lambda_{\rm QCD}^2} - 0.96 \frac{\lambda_1}{\Lambda_{\rm QCD}^2} - 0.56 \frac{\rho_1}{\Lambda_{\rm QCD}^3} + \dots$$
 (in units of GeV⁴)

From dimensional analysis

$$\frac{\langle m_X^4 - \langle m_X^2 \rangle^2 \rangle}{m_B^4} = \mathcal{O}(1) \frac{\bar{\Lambda}^2}{\bar{m}_B^2} + \mathcal{O}(1) \frac{\lambda_1}{\bar{m}_B^2} + \mathcal{O}(1) \frac{\rho_1}{\bar{m}_B^3} + \dots$$

- Breakdown of OPE: some coeffs $\gg O(1)$
- The previous expression is

$$\frac{\langle m_X^4 - \langle m_X^2 \rangle^2 \rangle}{m_B^4} = 0.1 \frac{\bar{\Lambda}^2}{\bar{m}_B^2} - 0.14 \frac{\lambda_1}{\bar{m}_B^2} - 0.86 \frac{\rho_1}{\bar{m}_B^3} + \dots$$

Large cancellation in Λ and λ_1 term

Moment is well behaved, but sensitive to ρ_1

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

Unknown 1/m³_b matrix elements
 generic size Λ³_{QCD}
 There is no favorite value
 In our fits we add

$$\Delta \chi^2(m_{\chi}, M_{\chi}) = \begin{cases} 0, & |\langle \mathcal{O} \rangle| \le m_{\chi}^3 \\ \frac{\left[|\langle \mathcal{O} \rangle| - m_{\chi}^3\right]^2}{M_{\chi}^6} & |\langle \mathcal{O} \rangle| > m_{\chi}^3 \end{cases}$$

We vary $0.5 \,\mathrm{GeV} < m_\chi < 1 \,\mathrm{GeV}$ and take $M_\chi = 0.5 \,\mathrm{GeV}$

Uncomputed higher order terms

- Fractional Error
 - $(\alpha_s/4\pi)^2 \sim 0.0003$
 - $(\alpha_s/4\pi)\Lambda_{\rm QCD}^2/m_b^2 \sim 0.0002$
 - $\Lambda_{\rm QCD}^4/(m_b^2 m_c^2) \sim 0.001$

We use

 $\sqrt{(0.001)^2 + (\text{last computed}/2)^2}$

- One fit including and one fit excluding BABAR data
- This allows to investigate effect of BABAR data

$m_{\chi} [{ m GeV}]$	χ^2	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

- BABAR data makes fit considerably worse
- More on this later

- Best estimate of perturbative uncertainties
- Best estimate of uncomputed $1/m^4$ and α_s/m^2 terms
- Very conservative estimate of $1/m^3$ uncertainties
- All publically available experimental uncertainties

SLAC—Dec 2002 – p.20

Not included:

Unknown experimental correlations

Uncertainties from "Duality violations"

More on Theoretical Error

$\blacksquare 1/m_b^3$ uncertainty

$m_{\chi} [{ m GeV}]$	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
0.5	40.8 ± 0.9	4.74 ± 0.10
1.0	41.1 ± 0.9	4.74 ± 0.11

Theoretical correlations

$$\begin{array}{c|c}
\delta(\lambda_1) & \delta\left(\lambda_1 + \frac{\mathcal{T}_1 + 3\mathcal{T}_2}{m_b}\right) \\
\pm 0.38 & \pm 0.22
\end{array}$$

Theoretical limitations

$\delta(V_{cb}) \times 10^3$	$\delta(m_b^{1S})[{\rm MeV}]$
± 0.35	± 35

Different mass schemes

tree level, order α_s , order $\alpha_s^2\beta_0$

Better convergence for 1S and PS scheme SLAC—Dec 2002 – p.22

Experimental correlations

How important are experimental correlations?

Increase all errors (except Γ_{sl}) by 2

	$ V_{cb} \times 10^3$	$m_b^{1S} [{ m GeV}]$
Original Fit	40.8 ± 0.9	4.74 ± 0.10
$2 \times errors$	40.8 ± 1.2	4.74 ± 0.24

Result once again

 $|V_{cb}| = (40.8 \pm 0.9) \times 10^{-3}$ $m_b^{1S} = (4.74 \pm 0.10) \text{ GeV}$ $\overline{m}_b(\overline{m}_b) = 4.22 \pm 0.09 \text{ GeV}$ SLAC—Dec 2002 – p.24

Babar hadronic moment

Significant disagreement with our fit results

Assume no non-resonant contribution between D^* and D^{**} . Then find excited D states contribute less than 25% in $B \rightarrow X_c e \nu$ decays.

Experimentally, \sim 36%

B^+/B^0 Production Ratio

