Precision Physics with inclusive B decays: A Global Fit

Aneesh Manohar

University of California, San Diego

Operator Product Expansion

Describe the decay $B \rightarrow X \ell \bar{\nu}$ using optical theorem

$$
\left.\Gamma \sim \sum_{X}\left|\langle B| J^{\mu}\right| X\right\rangle\left.\right|^{2} \sim \int d^{4} q e^{-i q \cdot x} \operatorname{Im}\langle B| T\left\{J^{\mu \dagger}(x) J^{\nu}(0)\right\}|B\rangle
$$

If the intermediate state is far off-shell, one can expand in terms of local operators (OPE)
Similar to Deep inelastic scattering or $e^{+} e^{-} \rightarrow$ hadrons

SLAC—Dec 2002 - p. 2

Need the integral over the entire physical cut Assumption of local duality

Local Duality

- To compare OPE results with data, have to smear result
- Smearing has to be over "many resonances"

Inclusive B decays

Typical OPE result for differential spectrum looks like

$$
\frac{d \Gamma}{d X}=\frac{d \Gamma_{\mathrm{part}}}{d X}+0 \frac{\bar{\Lambda}}{m_{b}} f_{\Lambda}(X)+\frac{\lambda_{i}}{m_{b}^{2}} f_{\lambda_{i}}(X)+\frac{\rho_{i}}{m_{b}^{3}} f_{\rho_{i}}(X)+\ldots
$$

Typical OPE result for moments of spectra looks like

$$
\langle X\rangle=\langle X\rangle_{\text {part }}+0 \frac{\bar{\Lambda}}{m_{b}} F_{\Lambda}+\frac{\lambda_{i}}{m_{b}^{2}} F_{\lambda_{i}}+\frac{\rho_{i}}{m_{b}^{3}} F_{\rho_{i}}+\ldots
$$

Each coefficient function has an expansion in $\alpha_{s}\left(m_{b}\right)$ and depends on m_{c} / m_{b}

Order

Compute to order

$$
\begin{gathered}
1, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{3}}{m_{b}^{3}} \\
\alpha_{s}, \alpha_{s, B L M}^{2}
\end{gathered}
$$

For hadronic moments, $\alpha_{s} \Lambda_{\mathrm{QCD}} / m_{b}$ terms known with no lepton energy cut.

Parameters

All inclusive results given in terms of parameters:

$$
\begin{gathered}
V_{c b}, \quad m_{b}, m_{c}, \quad \lambda_{1}, \lambda_{2} \\
\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}, \rho_{1}, \rho_{2}
\end{gathered}
$$

B and D masses can be used: $m_{b}, m_{c} \rightarrow \bar{\Lambda}$
B^{*} and D^{*} masses can be used to fix λ_{2} and $\rho_{2}-\mathcal{I}_{2}-\mathcal{I}_{4}$
Inclusive results depend on $\mathcal{T}_{1}+3 \mathcal{T}_{2}, \mathcal{T}_{2}+3 \mathcal{T}_{4}$ masses depend on $\mathcal{T}_{1}+\mathcal{T}_{3}$ and $\mathcal{I}_{2}+\mathcal{T}_{4}$

$$
\begin{gathered}
V_{c b}, \quad \bar{\Lambda}, \quad \lambda_{1} \\
\mathcal{T}_{1}-3 \mathcal{T}_{4}, \\
\mathcal{T}_{2}+\mathcal{T}_{4}, \\
\mathcal{T}_{3}+3 \mathcal{I}_{4}, \quad \rho_{1}
\end{gathered}
$$

Global Fit

- Use more data \Rightarrow reduce uncertainties
- See if there are inconsistencies between different measurements. Allows one to test local duality experimentally
- Investigate the effect of theoretical uncertainties
- Include theoretical correlations between different observables
- All quantities are fit using a consistent scheme

Data Used

- Lepton energy moments from CLEO

$$
\begin{aligned}
& R_{0}(1.5 \mathrm{GeV})=0.6187 \pm 0.0021 \\
& R_{1}(1.5 \mathrm{GeV})=(1.7810 \pm 0.0011) \mathrm{GeV} \\
& R_{2}(1.5 \mathrm{GeV})=(3.1968 \pm 0.0026) \mathrm{GeV}^{2}
\end{aligned}
$$

R_{0} and R_{1} : e / μ averaged value including correlation matrix, R_{2} : weighted average of e, μ

DELPHI ('02)

$$
\begin{aligned}
& R_{1}(0)=(1.383 \pm 0.015) \mathrm{GeV} \\
& R_{2}(0)-\left(R_{1}(0)\right)^{2}=(0.192 \pm 0.009) \mathrm{GeV}^{2}
\end{aligned}
$$

$$
S_{1}=m_{X}^{2}-\bar{m}_{D}^{2}, \quad S_{2}=\left\langle\left(m_{X}^{2}-\left\langle m_{X}^{2}\right\rangle\right)^{2}\right\rangle
$$

$$
\begin{aligned}
& S_{1}(1.5 \mathrm{GeV})=(0.251 \pm 0.066) \mathrm{GeV}^{2} \\
& S_{2}(1.5 \mathrm{GeV})=(0.576 \pm 0.170) \mathrm{GeV}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}(0)=(0.553 \pm 0.088) \mathrm{GeV}^{2} \\
& S_{2}(0)=(1.26 \pm 0.23) \mathrm{GeV}^{4}
\end{aligned}
$$

SLAC—Dec 2002 - p. 10

- Hadron invariant mass moments from BABAR

$$
\begin{aligned}
& S_{1}(1.5 \mathrm{GeV})=(0.354 \pm 0.080) \mathrm{GeV}^{2} \\
& S_{1}(0.9 \mathrm{GeV})=(0.694 \pm 0.114) \mathrm{GeV}^{2}
\end{aligned}
$$

CLEO ('01)

$$
\begin{aligned}
& T_{1}(2 \mathrm{GeV})=(2.346 \pm 0.034) \mathrm{GeV} \\
& T_{2}(2 \mathrm{GeV})=(0.0226 \pm 0.0069) \mathrm{GeV}^{2}
\end{aligned}
$$

- Average of semileptonic decay width for B^{+}and

$$
\Gamma(B \rightarrow X \ell \bar{\nu})=(42.7 \pm 1.4) \times 10^{-12} \mathrm{MeV}
$$

Cannot use data that includes B_{s}, Λ_{b}

Mass Schemes

- Pole Mass:
- Has a renormalon ambiguity of order Λ_{QCD}
- Perturbation series poorly behaved
- The two problems are related, asymptotic nature of perturbation series (i.e. divergent) related to non-perturbative corrections
- MS Mass:
- 1 S Mass using the upsilon expansion
- Other Schemes: PS Mass, . . . PS mass requires introducing a factorization scale μ_{f} that enters linearly in the mass: $m_{\text {pole }}=m_{\mathrm{PS}}+\ldots \mu_{f}$

SLAC—Dec 2002 - p. 13

Higher Hadron Moments

- Second hadron moment seems to give orthogonal information to most other moments
- Convergence of this moment questioned in literature
$\left\langle m_{X}^{4}-\left\langle m_{X}^{2}\right\rangle^{2}\right\rangle=0.73 \frac{\bar{\Lambda}^{2}}{\Lambda_{\mathrm{QCD}}^{2}}-0.96 \frac{\lambda_{1}}{\Lambda_{\mathrm{QCD}}^{2}}-0.56 \frac{\text { Falk, Luke ('97) }}{\Lambda_{1}^{3}}+\ldots$
(in units of GeV^{4})

SLAC—Dec 2002 - p. 14

- From dimensional analysis

$$
\frac{\left\langle m_{X}^{4}-\left\langle m_{X}^{2}\right\rangle^{2}\right\rangle}{m_{B}^{4}}=O(1) \frac{\bar{\Lambda}^{2}}{\bar{m}_{B}^{2}}+O(1) \frac{\lambda_{1}}{\bar{m}_{B}^{2}}+O(1) \frac{\rho_{1}}{\bar{m}_{B}^{3}}+\ldots
$$

- Breakdown of OPE: some coeffs $\gg \mathcal{O}(1)$
- The previous expression is

$$
\frac{\left\langle m_{X}^{4}-\left\langle m_{X}^{2}\right\rangle^{2}\right\rangle}{m_{B}^{4}}=\frac{\bar{\Lambda}^{2}}{\bar{m}_{B}^{2}}-\quad \frac{\lambda_{1}}{\bar{m}_{B}^{2}}-\quad \frac{\rho_{1}}{\bar{m}_{B}^{3}}+\ldots
$$

- Large cancellation in $\bar{\Lambda}$ and λ_{1} term

Moment is well behaved, but sensitive to ρ_{1}
SLAC—Dec 2002 - p. 15

Theoretical Uncertainties

Originate from unknown higher order terms in expansion

- Unknown $1 / m_{b}^{3}$ matrix elements
- generic size $\Lambda_{\mathrm{QCD}}^{3}$
- There is no favorite value
- In our fits we add

$$
\Delta \chi^{2}\left(m_{\chi}, M_{\chi}\right)= \begin{cases}0, & |\langle\mathcal{O}\rangle| \leq m_{\chi}^{3} \\ \frac{\left[|\mathcal{O}\rangle \mid-m_{\chi}^{3}\right]^{2}}{M_{\chi}^{6}} & |\langle\mathcal{O}\rangle|>m_{\chi}^{3}\end{cases}
$$

SLAC—Dec 2002 - p. 16

We vary $0.5 \mathrm{GeV}<m_{\chi}<1 \mathrm{GeV}$ and take $M_{\chi}=0.5 \mathrm{GeV}$

■ Uncomputed higher order terms

- Fractional Error
- $\left(\alpha_{s} / 4 \pi\right)^{2} \sim 0.0003$
- $\left(\alpha_{s} / 4 \pi\right) \Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2} \sim 0.0002$
- $\Lambda_{\mathrm{QCD}}^{4} /\left(m_{b}^{2} m_{c}^{2}\right) \sim 0.001$
- We use

$$
\sqrt{(0.001)^{2}+(\text { last computed } / 2)^{2}}
$$

SLAC—Dec 2002 - p. 18

The Result

- One fit including and one fit excluding BABAR data
- This allows to investigate effect of BABAR data

$m_{\chi}[\mathrm{GeV}]$	χ^{2}	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

- BABAR data makes fit considerably worse
- More on this later

SLAC—Dec 2002 - p. 19

Error analysis

- Best estimate of perturbative uncertainties
- Best estimate of uncomputed $1 / m^{4}$ and α_{s} / m^{2} terms
- Very conservative estimate of $1 / m^{3}$ uncertainties
- All publically available experimental uncertainties

Not included:

- Unknown experimental correlations

■ Uncertainties from "Duality violations"

More on Theoretical Error

- $1 / m_{b}^{3}$ uncertainty

$m_{\chi}[\mathrm{GeV}]$	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
0.5	40.8 ± 0.9	4.74 ± 0.10
1.0	41.1 ± 0.9	4.74 ± 0.11

\square Theoretical correlations

$\delta\left(\lambda_{1}\right)$	$\delta\left(\lambda_{1}+\frac{\mathcal{I}_{1}+3 \mathcal{I}_{2}}{m_{b}}\right)$
± 0.38	± 0.22

- Theoretical limitations

$\delta\left(\left\|V_{c b}\right\|\right) \times 10^{3}$	$\delta\left(m_{b}^{1 S}\right)[\mathrm{MeV}]$
± 0.35	± 35

Different mass schemes

tree level, order α_{s}, order $\alpha_{s}^{2} \beta_{0}$

Experimental correlations

How important are experimental correlations?

- Increase all errors (except $\Gamma_{s l}$) by 2

	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
Original Fit	40.8 ± 0.9	4.74 ± 0.10
$2 \times$ errors	40.8 ± 1.2	4.74 ± 0.24

SLAC-Dec 2002 - p. 23

Result once again

$$
\begin{aligned}
\left|V_{c b}\right| & =(40.8 \pm 0.9) \times 10^{-3} \\
m_{b}^{1 S} & =(4.74 \pm 0.10) \mathrm{GeV} \\
\bar{m}_{b}\left(\bar{m}_{b}\right) & =4.22 \pm 0.09 \mathrm{GeV}
\end{aligned}
$$

Babar hadronic moment

Significant disagreement with our fit results

SLAC-Dec 2002 - p. 25

Assume no non-resonant contribution between D^{*} and $D^{* *}$. Then find excited D states contribute less than 25% in $B \rightarrow X_{c} e \nu$ decays.

Experimentally, ~36\%

B^{+} / B^{0} Production Ratio

SLAC—Dec 2002 - p. 27

SLAC-Dec 2002 - p. 28

