A Short Introduction to the Soft-Collinear Effective Theory

Sean Fleming

Carnegie Mellon University

 $|V_{xb}|$ and $|V_{tx}|$ A workshop on semileptonic and radiative B decays SLAC, December 2002

Effective field Theory of highly energetic particles that have a small invariant mass

- **E >> M: Near the lightcone**
 - $\mathbf{p} = (\mathbf{p}^+, \mathbf{p}^-, \mathbf{p}_{||}) \sim \mathbf{Q}(\mathbf{M}^2/\mathbf{Q}^2, \mathbf{1}, \mathbf{M}/\mathbf{Q}) \sim \mathbf{Q}([]^2, \mathbf{1}, [])$
 - $\square << 1$, and $p^2 \sim \square^2$
- SCET has the right degrees of freedom for describing energetic particles interacting with soft "stuff"

Analogous to HQET: Effective Field Theory of Heavy and soft degrees of freedom--describes heavy particles interacting with soft "stuff"

If you only remember one thing... Remember this picture:

Light and energetic: SCET

SCET describes the light and energetic particles SCET is QCD in a limit

Kinematics

Pion momentum:
$$P_{\square}^{\square} = (2.640 \text{ GeV}, 0, 0, -2.636 \text{ GeV})$$

$$\approx Q \text{ n} \qquad \text{n}^{\square} = (1, 0, 0, -1)$$

$$= (0, 2, 0_{\square}) \text{ } \square \text{ LC coordinates}$$

- Corrections are small $\sim \square_{\rm QCD}$, ${\rm m}_\square$ relative to Q
 - Expansion in $\frac{\square_{QCD}}{Q}$ or $\frac{\square_{QCD}}{Q}$

Motivation

- Systematic: power counting in small parameter
- Understand Factorization in a universal way
 - Key to separate hard contributions from soft & collinear
 - Systematic corrections to factorization (power counting)
- Symmetries
 - Reduce the number form-factors
 - In HQET where there is only the Isgur-Wise function
- Sum infrared logarithms
 - Sudakov logarithms

So...what's it good for?

SCET couple to HQET can be used for any decays involving stationary heavy, and fast light particles:

B → D [] factorization

J.D. Bjorken: Color-transparency, Nucl. Phys. B (Proc. Suppl.) 11, 1989, 325 Dugan & Grinstein: Factorization in LEET Phys. Lett. B255: 583, 1991 Politzer & Wise: Factorization (proposed) Phys. Lett. B257: 399, 1991

Beneke, Buchalla, Neubert, Sachrajda: QCD factorizaton (proved to 2 loops) Nucl. Phys. B591: 313, 2000

Bauer, Pirjol, Stewart: SCET (proved to all orders in □s) Phys. Rev. Lett. 87: 201806, 200

Soft B □ **D form factor**

Hard coefficient calculate in PT: $\prod_s(M_b)$

Light-cone pion wavefunction: nonperturbative

Semi-leptonic heavy-to-light

Selected history:

Brodsky et. al. (1990)

Li & Yu (1996)

Bagan, Ball, Braun (1997)

Charles *et. al.* (1998)

Beneke & Feldman (2000)

Bauer et. al. (2000)

Descotes, Sachradja (2001)

Bauer, Pirjol, Stewart (2002)

Pirjol & Stewart (2002)

Hard part, 1/x² singularity

k_T factorization, Sudakov suppression

Light-cone sum rules

Symmetry relations: $\square(E)$, $\square_{\square}(\square)$

 $\mathcal{O}(\prod_s)$ corrections, factorization proposal

Collinear gluons, $C_i(\mathcal{P})$, soft factorization

More on Sudakov suppression

Factorization in SCET

Details of factorization in SCET

Semi-leptonic heavy-to-light

e.g. B 🔲 🖺 l 🗎 at large recoil

SCET factorization: all orders in \square_s , leading order in \square : Bauer, Pirjol. Stewarts hep-ph/0211069

$$F(\mathbf{M}^{2}) = \frac{1}{2} \mathbf{f}_{\mathbf{B}} \mathbf{f}_{\mathbf{M}} \int d\mathbf{z} \int d\mathbf{x} \int d\mathbf{r}_{+} \mathbf{T}(\mathbf{z}, \mathbf{M}, \square_{0}) \mathbf{J}(\mathbf{z}, \mathbf{x}, \mathbf{r}_{+}, \mathbf{M}, \square_{0}, \square) \square_{\square}(\mathbf{x}, \square) \square_{\square}^{+}(\mathbf{r}_{+}, \square)$$

+
$$C_k(M, \square) \square_k(q, \square)$$

Non-factorizable piece Non-perturbative form factors (restricted by symmetries in SCET) Factorizable piece Non-perturbative parameters: decay constants, LC wave functions

B \square I \square : Q² range where SCET is valid

- **Remember for SCET to be valid we need Q** >> $\overline{\square_{QCD}}$, m_{\square}

Q^2 (GeV ²)	E (GeV)	P (GeV)	$\mathbf{m}_{\square}/\square$ or $\mathbf{m}_{\square}/2$
0	2.70	2.58	0.286 0.143
0.25	2.67	2.56	0.288 0.144
1	2.60	2.48	0.300 0.150
2.25	2.48	2.36	0.310 0.155
4	2.32	2.19	0.330 0.165 Too
6.25	2.10	1.96	0.360 0.180 Big?!?!

Heavy-to-light factorization in SCET: Details

Calculable

Soft form factor

- $T(z,Q,\square_0)$ & $C_k(Q,\square)$: Expansion in $\square_s(Q)$ $Q \sim \{m_b,E=m_b-q^2/(2m_b)\}$

Factorization in B \[\Bigcup \Bigcup

QCD Factorization Proposed: Beneke, Buchalla, Neubert, Sachrajda: Phys. Rev. Lett. 83: 1914, 1999
Nucl. Phys. B591: 313, 2000

$$F(M) = f^{B \square \square}(0) \int dx \ T^{I}(x) \ \square_{\square}(x) + \int d\square \, dx \ dy \ T^{II}(\square, x, y) \ \square_{\square}(x) \ \square_{\square}(y)$$

• Was shown to hold to order \square_s

Perturbative QCD: Keum, Li, Sanda: hep-ph/0201103

$$F(M) = 0 + \int d \Box dx dy T^{II}(\Box, x, y) \Box_{\Box}(x) \Box_{\Box}(y)$$

- Sum Sudakov logarithms
- No proof in SCET yet
 - It is not a given that this will give the above formula
 - Wait and see...

What's to come?

- Proof of factorization in B □ □ □
 - Phenomenology
- Phenomenology in heavy-to-light semileptonic decays
 - Forward backward asymmetry
 - Extraction of form factors
 - Decay rates