B Physics with Lattice **Q**CD:

Status and Prospects

Aida X. El-Khadra (UIUC and Fermilab)

SLAC workshop on V_{xb} and $V_{tx'}$ Dec 4-6, 2002

1

Outline:

Motivation

- Introduction to lattice QCD
- • f_B and B_B
- Semileptonic *B* meson decays *B* ® *D*,*D** *lv B* ® *p lv*
- some recent developments
- •Prospects for the near future
- Conclusions

Motivation

present (2001) status:

errors are dominated by theory

After B factories:

assuming only incremental progress for theory errors 1/2

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

Motivation cont'd

The problem: for example $\frac{\mathfrak{Y}}{dq^2} \rightarrow p\ell \mathfrak{H}_{ab} = (known) \times |V_{ub}|^2 \times |f_+(q^2)|^2$

need the hadronic matrix elements from lattice QCD to determine the CKM matrix elements

goal:

2-3% theory errors from lattice QCD

Introduction

discretize space-time ...

fermion field lives on site: $\mathbf{y}(x)$ gauge field lives on link: $U_{\mathbf{m}}(x) = \exp[-iagA_{\mathbf{m}}(x)]$

... discretize the QCD action (Wilson)

e.g. discrete derivative
$$\Delta_{\mathbf{m}} \mathbf{y} = \frac{1}{2a} [\mathbf{y}(x + a\hat{\mathbf{m}}) - \mathbf{y}(x - a\hat{\mathbf{m}})]$$

in QCD Lagrangian $\overline{y}\partial_{m}y = \overline{y}\Delta_{m}y + a^{2}c(a)\overline{y}\Delta_{m}^{3}y + O(a^{4})$

where $c(a) = c(a; \mathbf{a}_s, m)$ depends on the QCD parameters calculable in pert. theory Lattice Lagrangian $L^{\text{lat}} = \sum_{i} c_i(a; \mathbf{a}_s, m) O_i(\mathbf{y}, \mathbf{y}, U_m)$

•in general: $L^{\text{lat}} = L^{\text{cont}} + O(a^n)$ $n \ge 1$

errors scale with the typical momenta of the particles, e.g. $(\Lambda_{\text{QCD}} a)^n$ for gluons and light quarks. keep $1/a \gg \Lambda_{\text{QCD}}$ typical lattice spacing a = 0.1 fm.

- I mprovement: add more terms to the action to make *n* large
 - •gluons: Wilson: a^2 errors (n = 2) Lüscher + Weisz: $a_s^2 a^2$ errors
 - •light quarks ($am \ll 1$): Wilson: a errors (n = 1) Clover (SW): $\mathbf{a}_s^2 a \text{ errors}$, $a^2 \text{ errors}$ (Sheikholeslami+Wohlert) staggered: $a^2 \text{ errors}$ improved staggered (Asqtad): $\mathbf{a}_s a^2 \text{ errors}$ (Lepage, MILC)

Lattice Lagrangian $L^{\text{lat}} = \sum_{i} c_i(a; \mathbf{a}_s, m) O_i(\mathbf{y}, \mathbf{y}, U_m)$

•heavy quarks ($m_Q \gg \Lambda_{\rm QCD}$ and $am_Q \ll 1$):

SW + HQ expansion (APE, UKQCD): start with light quark action, keep $am_Q < 1$ m_Q m_{charm} then use HQ expansion to reach $m_Q = m_b$ corresponds to expanding c_i in m_Q : $c_i = c_i^{(0)} + am_Q c_i^{(1)} + ...$ errors: $(ap)^n$, $(p/m_Q)^n$, $(am_Q)^n$

 \odot

Fermilab (Kronfeld, Mackenzie, AXK): start with rel. Wilson action (+ improvement) keep full mass dependence of c_i , add time-space asymmetry smoothly matches heavy and light mass limits: valid for all am_Q errors: $(ap)^n$, $(p/m_Q)^n$

systematic errors

• finite lattice spacing, a:

$$\langle \mathbf{0} \rangle^{\text{lat}} = \langle \mathbf{0} \rangle^{\text{cont}} + O(a^n)$$

take continuum limit:

•by brute force: computational effort grows like ~ (L/a)⁶

•by improving the action:

computational effort grows much more slowly

improved actions are much better ...

MILC 1999: compare different light quark actions

example: **r** meson mass vs. a^2

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

systematic errors, cont'd

• chiral extrapolation, m_l dependence:

In numerical simulations, $m_l > m_{u,d}$ because of the computational cost for small m.

use chiral perturbation theory to extrapolate to $m_{u,d}$

need $m_l < m_s/2$ and several different values for m_l (easier with staggered than Wilson-type actions)

•finite Volume:

 $L \sim 2 \text{ fm okay for } B$'s.

systematic errors, cont'd

 $n_f = 3$ with $m_s \neq m_{light}$ and $m_{light} = m_s/8$, $m_s/4$..., $m_s/2$,..., m_s using an improved staggered action ($a_s a^2$ errors)

systematic errors, cont'd

• perturbation theory: for example $\langle J_m^{\text{cont}} \rangle = Z^{\text{lat}} \langle J_m^{\text{lat}} \rangle$ Renormalization: from $p \sim p/a$ calculable in perturbation theory if a is small enough. For $a \sim 0.1$ fm, $a_s \sim 0.25$: with 1-loop pert. thy, errors $\sim O(\alpha_s^2) \sim 5\%$

Need 2-loop lattice perturbation theory for ~ few% errors difficult, especially with improved actions!

use:

- automated perturbation theory (Lüscher+Weisz, Lepage, et al)
- computational methods (di Renzo, et al)
- numerical methods (Lepage, Mackenzie, Trottier, ...)
- nonperturbative methods (Alpha, APE, ...)

example: static self energy to 3-loops (Trottier, et al, di Renzo+Scorzato) a_s to 2-loops (in progress)

What are the "easy" lattice calculations?

For stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron, for example:

- *p*, *K*, *D*, *D*^{*}, *D_s*, *D_s*^{*}, *B*, *B*^{*}, *B_s*, *B_s*^{*} mesons masses, decay constants, weak matrix elements for mixing, semileptonic, and rare decays
- charmonium and bottomonium (η_c , J/y, h_c , ..., h_b , U(1S), U(2S), ..) states below open D/B threshold masses, leptonic widths, electromagnetic matrix elements

This list includes most of the important quantities for CKM physics. Excluded are r mesons and other resonances.

"easy" quantities for most CKM elements ...

f_B and B_B

n_f = 0: *f_B* = 173 (23) MeV (Yamada average at Lattice 2002) has been stable in the last four years dominant error: *n_f* dependence
 n_f 0: most results have *n_f* = 2

"heavy" (valence) light quarks with $m_l = m_s/2$

 $f_B(n_f = 0) / f_B(n_f = 0) = 1.1 - 1.2$

 $f_{Bs} / f_{Bd} = 1.16 (5)$ agrees with $n_f = 0$

• new in 2002:

include chiral logs in chiral extrapolation increases $f_{Bs} / f_{Bd} \rightarrow 1.3$ increases the systematic error due to m_l dependence 1st result with $n_f = 3$ (MILC, Lattice 2002) but also with "heavy" valence light quarks

Yamada review at Lattice 2002

 f_B quenched

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

Yamada Lattice 2002 review: $(n_f = 0)$

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

m_l dependence: chiral logarithms

• When $m_l > m_{u,d}$, use ChPT to extrapolate $f_p(m_l)$ to the physical u,d quark masses (Gasser+Leutwyler, Sharpe, Bernard, Golterman, Shoreish):

$$f_{p}(m_{l}) = f(1 + ax_{l} + bx_{l} \log x_{l} + cx_{l}^{2}...)$$

where $x_{l} = 2 B_{0} m_{l} / (4pf)^{2} \ll 1$, and b is known.
chiral log becomes important for small m_{l} need $m_{l} < m_{s}/2$

• for f_B (Grinstein, et al, Booth, Sharpe, Zhang):

 $f_B(m_l) = f(1 + ax_l + b(1 + 3g^2)x_l \log x_l...)$

where $g \sim g_{B^*Bp}$ is the B^*Bp coupling, which is poorly known. from the D^* width (CLEO) $g^2 \sim 0.35$.

• the problem:

(valence) $m_l > m_s/2$ in most simulations to date

chiral logarithms cont'd

Hashimoto (Lattice 2002)

$$f_{Bs} / f_{Bd} = 1.24 - 1.38$$

agrees with Kronfeld + Ryan (2002) analysis of chiral logs.

- Kronfeld+Ryan: chiral logs are small for B_B
- Becirevic, et al: use double ratios: $(f_{Bs}/f_{Bd})/(f_K/f_p)$

solution: simulations with $m_l < m_s/2$

Semileptonic *B* meson decays

 $B \otimes D, D^* ln$:

e.g.
$$\frac{d\mathbf{G}(\mathbf{B} \otimes D^* l\mathbf{n})}{d\mathbf{w}} = (\text{known}) \quad (\mathbf{w}^2 - 1)^{1/2} \quad |\mathbf{V}_{cb}|^2 \ |\mathbf{F}_{\mathbf{B} \otimes D^*}(\mathbf{w})|^2$$

• calculate F(1) in lattice QCD from double ratios,

e.g.

$$R_{+} = \frac{\left\langle D \mid V_{0} \mid \overline{B} \right\rangle \left\langle \overline{B} \mid V_{0} \mid D \right\rangle}{\left\langle D \mid V_{0} \mid D \right\rangle \left\langle \overline{B} \mid V_{0} \mid \overline{B} \right\rangle} = \left| h_{+}(1) \right|^{2}$$

- when $m_b = m_c$: $R \equiv 1$.
- systematic errors scale with R 1, not R.
- with O(a) O(1/m) improved action R is correct through 1/m²

(Kronfeld)

$B \otimes D, D^* ln$ cont'd

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

B® pln

•
$$p_{\pi}(q^2)$$
 dependence: $\vec{p}_p \neq 0$
 $\left\langle \boldsymbol{p} \mid V_{\boldsymbol{m}} \mid B \right\rangle^{\text{lat}} = \left\langle \boldsymbol{p} \mid V_{\boldsymbol{m}} \mid B \right\rangle^{\text{cont}} + O(ap_p)^n$
 $p_p \leq 1 \text{GeV}$
improved actions help (keep *n* large)

• experiment: measure $d\mathbf{G}/dp_{\pi}$ for $0 \ll p_{p} < m_{B}/2$

× old solution: extrapolate to $p_p < m_B/2$ ($q^2 = 0$) by assuming shape (pole dominance) — introduces model dependence!

✓ better solution:

limit recoil momentum range, e.g.

 $400 \text{ MeV} < p_{\pi} < 800 \text{ MeV}$

Note: okay for D decays

FNAL (2000): partial differential decay rate

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

B® pln cont'd

✓ even better solution:

moving NRQCD (Foley, Lepage, 2002): give the B meson momentum p_B

write the *b* quark momentum as

 $p_b^{\mathbf{m}} = m_b u^{\mathbf{m}} + k^{\mathbf{m}}$

remove $m_b u^m$ from the dynamics reduces to regular NRQCD for *b* quark at rest.

no numerical simulations with this formalism yet

This idea can also be adapted to the Fermilab approach using HQET.

B® pln cont'd

to date: $n_f = 0$ only

also: new calculation on anisotropic lattices (Shigemitsu, et al)

B® **pln** cont'd

FNAL (2000): chiral extrapolation

dominant systematic error ~ 15 – 20%

Some Recent Developments

highly improved actions:

light quarks: improved staggered action: correct through ~ $O(a^2)$ computationally affordable $n_f = 3$ feasible! MILC (2002): $n_f = 3$ configurations at a = 0.12 fm with $m_s \neq m_{light}$ and $m_{light} = m_s/8, m_s/4 \dots, m_s/2, \dots, m_s$ heavy quarks: NRQCD: correct through ~ $O(a^2)$, $O(v^4)$ $O(v^6)$ in progress Fermilab: correct through ~ $O(a_a), O(p/m)$ $O(a^2)$, $O(p^2/m^2)$ in progress

automated perturbation theory

get pert. results for new actions quickly 2-loop calculations in progress

Recent Developments cont'd

- the new MILC configurations include realistic sea quark effects.
 - strategy:
 - the only free parameters in lattice QCD lagrangian: quark masses and a_s
 - tune the lattice QCD parameters using experiment: $m_{u,d}$, m_s , m_c , m_b using p, K, J/y, U meson masses a_s using 1P-1S splitting in U system
 - all other quantities should agree with experiment ... try this for some easy quantities ...

Recent Developments cont'd

HPQCD + MILC (preliminary)

works quite well!

A. El-Khadra, SLAC workshop, Dec. 4-6, 2002

Prospects for the near future

work currently in progress using the MILC configurations within the next year we can expect first results for ...

 ✓ U and J/y systems using NRQCD and Fermilab actions test the new heavy quark actions
 a_s, m_b, m_c

✓ *p*, *K* meson systems

using improved staggered light quarks with $m_l < m_s/2$ masses, decay constants, mixing, SL form factors

Prospects for the near future cont'd

... and for ...

 $\checkmark D, D_s, B, B_s$ meson systems

using improved staggered light quarks with $m_l < m_s/2$

masses (splittings), decay constants, mixing, SL form factors

comparison with CLEO-c essential to test lattice results

expect initial accuracy of < 10% errors with an ultimate goal of 2-3% errors.

Conclusions

✓ lattice QCD calculations are an important component of the physics program of the B factories.

✓ current status:

 $f_B, B_B, f_{B \otimes p}(E)$ to 10-30% accuracy $F_{B \otimes D^*}(1)$ to few % accuracy

- ✓ lattice results with realistic sea quark effects are here! expect to see a growing number of results within the next year
- ✓ made possible with improved staggered action
- ✓ improved heavy quark actions NRQCD/Fermilab
- 2-3% accuracy requires 2-loop pert. matching need to redo pert. calculations for the new actions automated pert. theory methods help

CLEO-c experiment is important for testing lattice QCD