Getting rid of the Fermi motion by choosing the proper kinematical variable

U. Aglietti, M.C., P. Gambino, NPB637(2002)427 [hep-ph/0204140]

Generic process:
$$H_Q \rightarrow X + Y_{\text{non-}QCD}$$

 H_Q : hadron containing a heavy quark Q with $m_Q \gg \Lambda_{QCD}$
 X : inclusive light-quark state (X_s, X_u)
 $Y_{\text{non-}QCD}$: non-coloured particles $(\gamma, l\nu, ...)$
 HQ "Fermi motion": $2_{QCD}^2 \ll m_X^2 \sim 2_{QCD}E_X \ll E_X^2$
 $\sim Universal shape function, independent of the final state$

SLAC – December 6, 2002	
-------------------------	--

Shape function from *perturbative* QCD

From the resummation theory in perturbative QCD:

If the end-point singularity is x = 1, f(x) resums all IR logs of the form:

$$x_s^k(E_X) \left(\frac{\ln^n (1-x)}{1-x} \right)_+ \qquad 0 \le n \le 2k-1$$

Marco Ciuchini $|V_{xb}|$ and $|V_{tx}|$
SLAC – December 6, 2002Page 2

1. photon spectrum in $B \rightarrow X_s \gamma$

kinematics

$$M_{X} \ll m_{B} \Leftrightarrow M_{X} \ll E_{X}$$

$$E_{y} = \frac{m_{B}}{2} \left(1 - \frac{M_{X}^{2}}{m_{B}^{2}} \right), \quad E_{X} = \frac{m_{B}}{2} \left(1 + \frac{M_{X}^{2}}{m_{B}^{2}} \right) \rightarrow \frac{m_{B}}{2}$$

$$\frac{d_{rd}}{dx} = \left| V_{tb} V_{ts}^{*} \right|^{2} \quad {}_{rd}^{0} \left[K_{rd}(\alpha_{s}) f(x) + D_{rd}(x;\alpha_{s}) \right]$$

U. Aglietti, NPB610(2001)293

2. triple-differential distribution in $B \rightarrow X_u l v$

* 3 scales: m_B , E_X , m_X (in this case $2E_X \neq m_B$)

* good kinematical variables: (the *relevant* hard scale is E_{X} , not m_{B})

$$w = \frac{2E_X}{m_B}, \quad x_l = \frac{2E_l}{m_B}, \quad \xi = \frac{2t}{1+t} \qquad t \equiv \sqrt{1 - \frac{M_X^2}{E_X^2}}$$

$$\frac{d^3}{dx_l dw d\xi} = |V_{ub}|^2 \quad {}^0_{sl} \Big[K_{sl}(x_l, w; \alpha_s) f(\xi) + D_{sl}(x_l, w, \xi; \alpha_s) \Big]$$

$${}^0_{sl} = \frac{G_F^2 m_b^3 \overline{m}_b^2}{192 \pi^3} \qquad \blacktriangleright f(\bullet) \text{ is the } \underline{same} \text{ function} \\ appearing \text{ in } B \to X_s \gamma$$
Marco Ciuchini
$${}^{V_{xb}I \text{ and } V_{xs}I} \\ SLAC - December 6, 2002 \qquad Page 5$$

Remainder functions

relatively large contribution from remainder functions sizable theoretical uncertainty dominated by the μ dependence due to $\alpha_s(\mu)$

Marco Ciuchini	$ V_{xb} $ and $ V_{tx} $ SLAC – December 6, 2002	Page 6

The "master formula"

 equation involving *experimental* and *short-distance* quantities only

- ✓ l.h.s. is a function of $\xi = x$, r.h.s. is a constant
- \checkmark correlation among $|V_{cb}|$, $|V_{ub}|$ and $|V_{tb}V_{ts}^*|$

 \checkmark trivially extendible to partially-integrated *BR*s

Marco Ciuchini	$ V_{xb} $ and $ V_{tx} $	Page 7
	SLAC – December 6, 2002	I age /

Extracting $|V_{ub} / V_{cb}|$

✓ In the approximation $|V_{cb}|^2 \sim |V_{tb} V_{ts}^*|^2$:

Cancellation of the remainder functions

much smaller than the contribution of the spectra

Pros and Cons

- + only measurable and NLO perturbative quantities involved
- + well-defined IR subtraction scheme for the shape function
- + valid "point by point" or integrated over different ranges
- + no shape-function modeling nor specific moments needed
- + checks the theory of the shape function, higher-twist effects and the local quark-hadron duality
- + eventually allows extracting $|V_{ub}/V_{cb}|$ with a O(5%)

theoretical error (if higher twists are negligible)

- higher twists may be non-negligible
- differences in the experimental resolution functions spoil the cancellation of the shape function: needs deconvolution

Marco Ciuchini	$ V_{xb} $ and $ V_{tx} $ SLAC – December 6, 2002	Page 10