Getting rid of the Fermi motion by choosing the proper kinematical variable

U. Aglietti, M.C., P. Gambino, NPB637(2002)427 [hep-ph/0204140]

Generic process: $H_{Q} \rightarrow X+Y_{\text {non- } Q C D}$

H_{Q} : hadron containing a heavy quark Q with $m_{Q} \gg \Lambda_{Q C D}$ X : inclusive light-quark state $\left(X_{s}, X_{u}\right)$
$Y_{\text {non-QCD }}$: non-coloured particles $(\gamma, l v, \ldots)$
$H Q$ "Fermi motion" : $\quad \Lambda_{Q C D}^{2} \ll m_{X}^{2} \sim \Lambda_{Q C D} E_{X} \ll E_{X}^{2}$
$>$ Universal shape function, independent of the final state

Shape function from perturbative QCD

From the resummation theory in perturbative QCD:

If the end-point singularity is $x=1, f(x)$ resums all IR logs of the form:

$$
\alpha_{s}^{k}\left(E_{X}\right)\left(\frac{\ln ^{n}(1-x)}{1-x}\right)_{+} \quad 0 \leqslant n \leqslant 2 k-1
$$

1. photon spectrum in $B \rightarrow X_{s} \gamma$

kinematics

$$
E_{\gamma}=\frac{m_{B}}{2}\left(1-\frac{M_{X}^{2}}{m_{B}^{2}}\right), \quad E_{X}=\frac{m_{B}}{2}\left(1+\frac{M_{X}^{2}}{m_{B}^{2}}\right) \rightarrow \frac{m_{B}}{2}
$$

$$
\frac{d \Gamma_{r d}}{d x}=\left|V_{t b} V_{t s}^{*}\right|^{2} \Gamma_{r d}^{0}\left[K_{r d}\left(\alpha_{s}\right) f(x)+D_{r d}\left(x ; \alpha_{s}\right)\right]
$$

U. Aglietti, NPB610(2001)293

$$
x \equiv \frac{2 E_{\gamma}}{m_{B}}=\frac{2 t}{1+t} \quad \text { with } t \equiv \sqrt{1-\frac{M_{X}^{2}}{E_{X}^{2}}} \quad \Gamma_{r d}^{0} \equiv \frac{\alpha_{e}}{\pi} \frac{G_{F}^{2} m_{b}^{3} \bar{m}_{b}^{2}}{32 \pi^{3}}
$$

2. triple-differential distribution

in $B \rightarrow X_{u} l \vee$

* 3 scales: m_{B}, E_{X}, m_{X} (in this case $2 E_{X} \neq m_{B}$)
* good kinematical variables: (the relevant hard scale is E_{X}, not m_{B})

$$
w=\frac{2 E_{X}}{m_{B}}, \quad x_{l}=\frac{2 E_{l}}{m_{B}}, \xi=\frac{2 t}{1+t} \quad t \equiv \sqrt{1-\frac{M_{X}^{2}}{E_{X}^{2}}}
$$

$$
\frac{d^{3} \Gamma_{s l, u}}{d x_{l} d w d \xi}=\left|V_{u b}\right|^{2} \Gamma_{s l}^{0}\left[K_{s l}\left(x_{l}, w ; \alpha_{s}\right) f(\xi)+D_{s l}\left(x_{l}, w, \xi ; \alpha_{s}\right)\right]
$$

$$
\Gamma_{s l}^{0}=\frac{G_{F}^{2} m_{b}^{3} \bar{m}_{b}^{2}}{192 \pi^{3}}
$$

$>f(\bullet)$ is the same function appearing in $B \rightarrow X_{s} \gamma$

Remainder functions

relatively large contribution from remainder functions
$>$ sizable theoretical uncertainty dominated by the μ dependence due to $\alpha_{s}(\mu)$

The "master formula"

$$
\left.\frac{\frac{d B R_{s l, u}}{d \xi}-\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{B R_{s l, c}}{g_{s l}} D_{s l}\left(\xi ; \alpha_{s}\right)}{\frac{d B R_{r d}}{d x}-\frac{6 \alpha}{\pi}\left|\frac{V_{t b} V_{t s}^{*}}{V_{c b}}\right|^{2} \frac{B R_{s l, c}}{g_{s l}} D_{r d}\left(x ; \alpha_{s}\right)}\left|=\frac{\pi}{6 \alpha} \frac{K_{s l}\left(\alpha_{s}\right)}{K_{r d}\left(\alpha_{s}\right)}\right| \frac{V_{u b}}{V_{t b} V_{t s}^{*}}\right|^{2}
$$

\checkmark equation involving experimental and short-distance quantities only
\checkmark l.h.s. is a function of $\xi=x$, r.h.s. is a constant
\checkmark correlation among $\left|V_{c b}\right|,\left|V_{u b}\right|$ and $\left|V_{t b} V_{t s}{ }^{*}\right|$
\checkmark trivially extendible to partially-integrated $B R \mathrm{~s}$

Extracting $\left|V_{u b} / V_{c b}\right|$

\checkmark In the approximation $\left|V_{c b}\right|^{2} \sim\left|V_{t b} V_{t s}{ }^{*}\right|^{2}$:

$$
\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \simeq C\left(\alpha_{s}\right) \frac{\frac{d B R_{s l, u}}{d \xi}}{\left.\frac{d B R_{r d}}{d x}\right|_{x=\xi}-h\left(\xi ; \alpha_{s}\right)}
$$

$$
\begin{gathered}
C\left(\alpha_{s}\right) \equiv \frac{6 \alpha}{\pi} \frac{K_{r d}\left(\alpha_{s}\right)}{K_{s l}\left(\alpha_{s}\right)} \simeq(1.94 \pm 0.16) \times 10^{-3} \\
h\left(\xi ; \alpha_{s}\right) \equiv \frac{6 \alpha}{\pi} \frac{B R_{s l, c}}{g_{s l}}\left[D_{r d}\left(\xi ; \alpha_{s}\right)-\frac{K_{r d}\left(\alpha_{s}\right)}{K_{s l}\left(\alpha_{s}\right)} D_{s l}\left(\xi ; \alpha_{s}\right)\right]
\end{gathered}
$$

Cancellation of the remainder functions

$$
h\left(\xi ; \alpha_{s}\right) \sim 10^{-5}
$$

$>$ much smaller than the contribution of the spectra

Pros and Cons

+ only measurable and NLO perturbative quantities involved + well-defined IR subtraction scheme for the shape function + valid "point by point" or integrated over different ranges + no shape-function modeling nor specific moments needed + checks the theory of the shape function, higher-twist effects and the local quark-hadron duality
+ eventually allows extracting $\left|V_{u b} / V_{c b}\right|$ with a $O(5 \%)$ theoretical error (if higher twists are negligible)
- higher twists may be non-negligible
- differences in the experimental resolution functions spoil the cancellation of the shape function: needs deconvolution

